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The propagation of elastic-plastic waves in a solid, initiated under an impact load, 
is dependent on the type of material, i.e., its rheological, relaxational, dissipative, 
and dispersion properties, which may depend nonlinearly on the magnitude of the applied 
impact stress. In one of the first analytical studies of the processes involved in the 
generation of waves [i] under conditions of one-dimensional deformation the authors resorted 
to the comparatively simple determining equation for a viscoelastic body with quadratic 
nonlinearity. An interesting result was presented in [i], which is, as yet, not completely 
clear from the physical standpoint, and according to which the time required for the wave 
to enter a steady-state propagation regime is approximately greater by a factor of five 
than the duration of the steady wave front. However, this result is not in agreement with 
experimental data obtained for elastic-viscoplastic materials. In this connection, it is 
extremely important that an analogous analysis be undertaken, while maintaining the one- 
dimensionality of the problem, for the more complex form of the determining equation, and 
in addition the derived results must be compared against experimental data. One of these 
realistic determining equations, widely discussed in the literature, is the Sokolovskii- 
Malverne equation and its dislocation variant [2, 3]. 

In the present study we undertake an analytical investigation into the process of the 
propagation of a nonsteady elastic-plastic wave in a material with dislocation kinetics 
of plastic deformation. We have set ourselves the goal of deriving an analytical relation- 
ship for the so-called Bland number [i], i.e., the ratio of the time for the entry of the 
wave onto the steady-state propagation segment relative to the duration of its steady front. 
Knowledge of this characteristic makes it possible to estimate the time required to generate 
waves in various materials, without conducting any complex and expensive experiment. 

I. Formulation of the Problem. We solve a system of equations for a continuous medium, 
this system closed by an equation in dislocation form: 

pa2ui/Ot 2 -}- cr i j , j  = O; 

d~/c~ t  -F ~9~'uJOt Oxj = 0; 

~ii  = F [ e ~ ,  ei: . . . .  ]. 

(l.la) 

(Z.lb) 

(1.1c) 
To obtain the uniaxial load with the aid of transition to shear strain ~ (see [2]) we will 
rewrite system (l.la)-(l.lc) in one-dimensional form. The determining equation in disloca- 
tion form is found in [2]. In conclusion 

putt -~ ~x ---- 0; (l.2a) 

a t -~ utx = 0; (l.2b) 

~t-- pc2~t = ---T ~ l+~00Y (x-- xi), (1.2c) 

where p is the density of the material; u, the displacement of the particles in the medium; 
o, the normal stress; s, the total strain (the elastic strain in combination with the plastic 
strain) in the direction of wave propagation; c, the longitudinal speed of sound; b, the 
value of the Burgers vector; No, the initial dislocation density; ~, the maximum resolving 
stress; ~i, the inverse stress [2]; ~, the dislocation multiplication factor. The subscripts 
t and x indicate differentiation with respect to time and coordinate, while the symbol beyond 
the comma at the tensor reflects differentiation with respect to the corresponding coordinate. 
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With uniaxial deformation of isotropic materials ~ and 7 can be expressed in terms 
of the normal components of total strain and stress: 

= ( 3 / 4 ) [ a  (s + 2~/3)s]; 

7 = ( 3 ~ / 8 ) [ a  - (~ + 2~)e  1. 

Having  e l i m i n a t e d  t h e  n o r m a l  s t r e s s  f r om ( 1 . 3 ) ,  we h a v e  ~ = ~ ( r  - 2 ~ ) .  
e q u a t i o n  ( 1 . 2 c )  a s s u m e s  t h e  f o r m  

7t : ? ,  (l + M?)  (e - -  27), ( 1 . 5 )  

w h e r e  ~ ,  = b2N0p/B,  M = a /N o . S y s t e m  o f  e q u a t i o n s  ( 1 . 2 a ) ,  ( 1 . 2 b ) ,  ( 1 . 5 )  i s  r e d u c e d  t o  a 
single nonlinear equation for the shear strain ~: 

De ~, (1 + My) ~ V']ChY -- 0 ( 1 . 6 )  

([-]a ~ @2/~X2 - -  (i/a2)82/St2 is the standard notation for the wave operator, Oh= c 2 I 3 

is the hydrostatic velocity). Equation (1.6) is enhanced with the initial and boundary 
conditions. For the case of uniaxial stepwise loading to displace the particles of the 
medium, we will write these initial and boundary conditions in the following form: 

(1.B) 

(1.4) 

Then the determining 

u(x, O) = ut(x , 0) = 0; ( 1 . 7 a )  

ut(O, t) = voO(t ) ( 1 . 7 b )  

[0(t) is the Heaviside function]. We will rewrite these conditions to the condition at 
~, using the Seitz-Reed relationship (assuming that it is valid at the boundary of the target): 

= b mov ) (1.8) 

(yt (~ Nm0 , Vd (~ respectively denote the shear strain, the density, and the velocity of 
the dislocations at the boundary of the target). The dislocation velocity is expressed 
in terms of the stress 

v d = ~ - -  ~i)b/B, ( 1 . 9 )  

the maximum stress is replaced by the normal stress: �9 = og, where g = (i - 2v)/[2(i - 
v)], v is the Poisson coefficient. In the subsequent derivation it is essential that we 
take into consideration the Hugoniot-Rankine relationship at the boundary of the material: 

= ~eu~ ~ (i. i0) 

Using (l.7a)-(l.lO), and also in the assumption of a purely elastic response from the materi- 
al at the initial instant of time, we will express the initial and boundary conditions at 
u as follows: 

7~ (0, t) = - -  (l/e) y ,  [peu~ ~ (t) g/~ -- ~*]; 

?~ (0, t ) =  7.  [gpcu~ ~ ( t ) / ~ -  T.];  

~t (x, O)= 7.  [ gpcu~ ~ ( 0 ) I ~ -  x . ] ;  

7(x,  0 ) ~ 0 ;  ~*=~o /~ -  

2. Method of Solution. Let us note that as M ~ ~ in Eq. (1.6) it is possible to drop 
the first term, and in conclusion we are left with an ordinary wave equation for y, which 
in the form of a solution provides a simple wave moving at hydrostatic velocity. This re- 
sult is analogous to one of the conclusions in [4]. 

In Eq. (1.6), in order to find the solution, the small parameter K is isolated, and 
for this reason it is rewritten in the convenient form 

( 2 . 1 )  
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2 , ~ - - - - - t - -  C 2 . 
2ChM?, 

Since c h ~ c, K is obviously dimensionless and consequently, in zeroth approximation, the 
term containing K can be dropped. In this case Eq. (2.1) assumes the form 

VqCh~ = 0, ( 2 . 2 )  

where 

i3 vt (x, t) 
(x, t) -~ "~(x, t) + t/M---~(x, t)" ( 2 . 3 )  

The boundary and initial conditions at ~ are easily expressed in terms of the function E(x, t): 

AO (t) - -  B 
(0, t) ---- (A - -  B) t + ~ t /M-~ FA----~) t ' 

S:~(O, t ) =  - -  + ( A O  (t) - -  B) + [5 (AO(t) ~ B ~  ~ 

e [ I / M +  ( A - - B )  t] 2 

A8 (t) 
- -  ~ "t/M-~- (A-- B) t ; 

(x ,O)= ~M(A--B)O(--x  2) 
(A = y ,  gpcvo]~, B = ? , T , ) .  

( 2 . 4 a )  

( 2 . 4 b )  

(2.4c) 

Solution of problem (2.2), (2.4a)-(2.4c) is sought in the form 

~(x, t) = v ~ , t )  + w ~ , t ) ,  

w h e r e  u n d e r  t h e  c o n d i t i o n  W(x,  0 )  = E ( x ,  0 )  

W(x,  t) = ~M(A - -  B)O(c~t ~ --  x~). 

For the function V(x, t) we obtain the system 

D~v = o, V(x, o)= o, 
V (0, t) = E (0, t) - -  ~ M  (A - -  B) ---- u o (t), 

v ~  (o,  t) = E~ (o ,  t) = u l  ( t ) .  
(2 .5)  

The solution for this problem will be 

v(x, t) = g~(z, .) ~ uo(.) + g(x, .) ~ ul(.). 

Convolution in formula (2.6) is accomplished by means of the Green's function: 

g (x ,  0 = -5 -  o - t~ . 

( 2 . 6 )  

To obtain the analytical form of the solution for problem (2.5), we choose a region in which 
the velocity of motion for the plastic wave changes. It is assumed that its velocity cannot 
be smaller than the hydrostatic velocity c h and larger than the elastic velocity c (t < 
X/Ch). Using this condition, we can rewrite (2.5) to the form 

x~h+t 

V ( x ' t ) = T [  ~ + t - - u ~  T h - - t  + T  u l ( ' ) d ' "  
Xleh-t 

Then, for the function E(x, t), with consideration of the specific form of the boundary 
and initial conditions, we finally obtain 
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I- ~o(~ +,)_. 
+41_,,~,+<A_,,,(i+, ) ',~::-~, (--(-{-,)ii 

+ It (cUc) t I ( { I I [ M ( A -  B)] + zlq~p - -  t2). 

+ 

We will now solve the ordinary differential equation (2.3), substituting y(x, t) = I/(I/M + 
~(x, t)). As a result, 

exp E (x, "0 q- d~ 

V (x, t) = P t 

1 C exp E(x, z) q- dz dz n + -  V 
x~e xlcp P 

The integration constant q is found from the condition of equality to zero for the shear 
strain at the initial instant of time: 

i i( , ) ]  i [+i:( t = (x, T) + d~ ~ exp g (x, z) + dz d~. 
I_ ~lcp x p 

Integrating over the exponential, for 

t 

I ~)d~ Fix,,) ~ S(~x~)+ 
~C/Cp 

we obtain 

, (,_x ~ ( , _~ ) ( , ~  x~,~)]§ F (x, t)= -~- [ 4  -~-~) + 

,~-x~i~ 
+ ( t - - - - ~ ) ] n  1 - -  r. ! _ x-i~ ~ 2 , .  

, [M ~A-,,) + KJ - "  i~ ) 

(2.8) 

3. Entry of the Wave into the Steady State. As the wave velocity approaches the steady 
state, the logarithm in expression (2.8) can be expanded, bearing in mind the smallness 
of the term removed from under the logarithm sign: F(x, t) = ~(x, t)(t - X/Cp), where 

(o(x, t) = t l M ~  + a(K - -  ~(x))(t + X/Cp). (3.1) 

Here a = I -- Chic; K = (A -- B)/(2~); ~(x) -= B) + -- x2/c Subsequently, the func- 

tion ~(x, t) is studied to the limit, and the physical critical point is chosen, for which 

~,  (-n--~y~--~,) - ~ I 4 )  + " ( 3  2b) 

In these calculations we take into consideration the form of the relationship between the 
ordinary wave and the coordinates and time. 

The characteristic equation of quadratic form for the second derivatives of the function 
~(x, t) has the form 
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~(~ + (2a/Cp)~(xo)) + a~(Xo) = O, ~x(xo) < O, 

whose roots are as follows: 

~ 1 , ~ = ~ i ~ ( x o ) l  I___ 1+a l~=(=o)  I . 

It is obvious that the found critical point is the point of inflection. By means of formula 
(3.1) it is not difficult to prove that m(x, t) is a diminishing function. In the following 
it is assumed that the bending segment in which the frequency changes by no more than 10% 
in either direction is that section in which the propagation of the wave is steady, so that 
t o represents the time required for the wave to reach the steady state. As Cp ~ c h the 
root in expression (3.2b) can be expanded in series, leading to 

2 (Ch/CP) 
t~ = M?.( gpCV o/~ -- ~.) (t  -- c~ / c~  " 

h ~ p ]  

This yields an interesting result, according to which the time required for the wave to 
reach the steady-state segment of propagation is reduced as the loading velocity increases 
in conjunction with the density of the loaded material, and it increases as the velocity 
of plastic-wave propagation approaches the hydrostatic velocity. 

In (2.7) the integral in the denominator is evaluated as follows: 

t 

exp [F (x, "01 d~ ~ t exp [F (x, t)], 
o 

and the error of the approximation can easily be estimated by means of the obvious inequality 

t exp [F (x, 0)] ~ j" exp [F (x, x)] d~ ~ t exp [F (x, t)]. 
o 

Thus the error does not exceed AI = 1 -- exp [F(x, 0) - F(x, t)], which is a quantity that 
is smaller in proportion to the extent to which it is true that exp [F(x, 0) - F(x, t)] = i. 

In calculating the duration of the steady front, in analogy with [i], for the Bland 

number we have 
~ --I Io 4 (c hlcp} ( I  - c~1%) 

= M (gp~Vo/~ - ~,) in 19 " (3.3) 

The Bland number undergoes no significant change over a rather large range of velocities. 
The given formula was tested on experimental profiles [2]. Rather good agreement was found 
with experiment. Thus, for test firing 927 in [2], the thickness of the aluminum 6061-T6 
target at which the profile becomes steady, is equal to 6.15 mm. According to formula (3.3), 
however, for this same test firing, with a stationary profile width of 60 nsec, the calcu- 
lated target thickness is 6.13 mm. 
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